skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lopez_Armengol, Federico G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We presentAsterX, a novel open-source, modular, GPU-accelerated, fully general relativistic magnetohydrodynamic (GRMHD) code designed for dynamic spacetimes in 3D Cartesian coordinates, and tailored for exascale computing. We utilize block-structured adaptive mesh refinement (AMR) throughCarpetX, the new driver for theEinstein Toolkit, which is built onAMReX, a software framework for massively parallel applications.AsterXemploys the Valencia formulation for GRMHD, coupled with the ‘Z4c’ formalism for spacetime evolution, while incorporating high resolution shock capturing schemes to accurately handle the hydrodynamics.AsterXhas undergone rigorous testing in both static and dynamic spacetime, demonstrating remarkable accuracy and agreement with other codes in literature. Using subcycling in time, we find an overall performance gain of factor 2.5–4.5. Benchmarking the code through scaling tests on OLCF’s Frontier supercomputer, we demonstrate a weak scaling efficiency of about 67%–77% on 4096 nodes compared to an 8-node performance. 
    more » « less
    Free, publicly-accessible full text available December 27, 2025